3.132 \(\int \frac {(d+c^2 d x^2)^{3/2} (a+b \sinh ^{-1}(c x))}{x} \, dx\)

Optimal. Leaf size=249 \[ \frac {1}{3} \left (c^2 d x^2+d\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+d \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )-\frac {2 d \sqrt {c^2 d x^2+d} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 x^2+1}}-\frac {b d \sqrt {c^2 d x^2+d} \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 x^2+1}}+\frac {b d \sqrt {c^2 d x^2+d} \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 x^2+1}}-\frac {4 b c d x \sqrt {c^2 d x^2+d}}{3 \sqrt {c^2 x^2+1}}-\frac {b c^3 d x^3 \sqrt {c^2 d x^2+d}}{9 \sqrt {c^2 x^2+1}} \]

[Out]

1/3*(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))+d*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)-4/3*b*c*d*x*(c^2*d*x^2+d)^
(1/2)/(c^2*x^2+1)^(1/2)-1/9*b*c^3*d*x^3*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-2*d*(a+b*arcsinh(c*x))*arctanh(c
*x+(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-b*d*polylog(2,-c*x-(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d
)^(1/2)/(c^2*x^2+1)^(1/2)+b*d*polylog(2,c*x+(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 249, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {5744, 5742, 5760, 4182, 2279, 2391, 8} \[ -\frac {b d \sqrt {c^2 d x^2+d} \text {PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 x^2+1}}+\frac {b d \sqrt {c^2 d x^2+d} \text {PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 x^2+1}}+\frac {1}{3} \left (c^2 d x^2+d\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+d \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )-\frac {2 d \sqrt {c^2 d x^2+d} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 x^2+1}}-\frac {b c^3 d x^3 \sqrt {c^2 d x^2+d}}{9 \sqrt {c^2 x^2+1}}-\frac {4 b c d x \sqrt {c^2 d x^2+d}}{3 \sqrt {c^2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/x,x]

[Out]

(-4*b*c*d*x*Sqrt[d + c^2*d*x^2])/(3*Sqrt[1 + c^2*x^2]) - (b*c^3*d*x^3*Sqrt[d + c^2*d*x^2])/(9*Sqrt[1 + c^2*x^2
]) + d*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]) + ((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/3 - (2*d*Sqrt[d
 + c^2*d*x^2]*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] - (b*d*Sqrt[d + c^2*d*x^2]*PolyL
og[2, -E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] + (b*d*Sqrt[d + c^2*d*x^2]*PolyLog[2, E^ArcSinh[c*x]])/Sqrt[1 + c^2*
x^2]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5742

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
(f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n)/(f*(m + 2)), x] + (Dist[Sqrt[d + e*x^2]/((m + 2)*Sqrt[1
+ c^2*x^2]), Int[((f*x)^m*(a + b*ArcSinh[c*x])^n)/Sqrt[1 + c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(f*
(m + 2)*Sqrt[1 + c^2*x^2]), Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f
, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] &&  !LtQ[m, -1] && (RationalQ[m] || EqQ[n, 1])

Rule 5744

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n)/(f*(m + 2*p + 1)), x] + (Dist[(2*d*p)/(m + 2*p + 1), Int
[(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p]
)/(f*(m + 2*p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^
(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]
 && (RationalQ[m] || EqQ[n, 1])

Rule 5760

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c^(m
 + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[
e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x} \, dx &=\frac {1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+d \int \frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{x} \, dx-\frac {\left (b c d \sqrt {d+c^2 d x^2}\right ) \int \left (1+c^2 x^2\right ) \, dx}{3 \sqrt {1+c^2 x^2}}\\ &=-\frac {b c d x \sqrt {d+c^2 d x^2}}{3 \sqrt {1+c^2 x^2}}-\frac {b c^3 d x^3 \sqrt {d+c^2 d x^2}}{9 \sqrt {1+c^2 x^2}}+d \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {\left (d \sqrt {d+c^2 d x^2}\right ) \int \frac {a+b \sinh ^{-1}(c x)}{x \sqrt {1+c^2 x^2}} \, dx}{\sqrt {1+c^2 x^2}}-\frac {\left (b c d \sqrt {d+c^2 d x^2}\right ) \int 1 \, dx}{\sqrt {1+c^2 x^2}}\\ &=-\frac {4 b c d x \sqrt {d+c^2 d x^2}}{3 \sqrt {1+c^2 x^2}}-\frac {b c^3 d x^3 \sqrt {d+c^2 d x^2}}{9 \sqrt {1+c^2 x^2}}+d \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {\left (d \sqrt {d+c^2 d x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \text {csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}\\ &=-\frac {4 b c d x \sqrt {d+c^2 d x^2}}{3 \sqrt {1+c^2 x^2}}-\frac {b c^3 d x^3 \sqrt {d+c^2 d x^2}}{9 \sqrt {1+c^2 x^2}}+d \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac {2 d \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {\left (b d \sqrt {d+c^2 d x^2}\right ) \operatorname {Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}+\frac {\left (b d \sqrt {d+c^2 d x^2}\right ) \operatorname {Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}\\ &=-\frac {4 b c d x \sqrt {d+c^2 d x^2}}{3 \sqrt {1+c^2 x^2}}-\frac {b c^3 d x^3 \sqrt {d+c^2 d x^2}}{9 \sqrt {1+c^2 x^2}}+d \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac {2 d \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {\left (b d \sqrt {d+c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {\left (b d \sqrt {d+c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}\\ &=-\frac {4 b c d x \sqrt {d+c^2 d x^2}}{3 \sqrt {1+c^2 x^2}}-\frac {b c^3 d x^3 \sqrt {d+c^2 d x^2}}{9 \sqrt {1+c^2 x^2}}+d \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {1}{3} \left (d+c^2 d x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac {2 d \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {b d \sqrt {d+c^2 d x^2} \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {b d \sqrt {d+c^2 d x^2} \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.77, size = 248, normalized size = 1.00 \[ -a d^{3/2} \log \left (\sqrt {d} \sqrt {c^2 d x^2+d}+d\right )+\frac {1}{3} a d \left (c^2 x^2+4\right ) \sqrt {c^2 d x^2+d}+a d^{3/2} \log (x)+\frac {b d \sqrt {c^2 d x^2+d} \left (\sqrt {c^2 x^2+1} \sinh ^{-1}(c x)+\text {Li}_2\left (-e^{-\sinh ^{-1}(c x)}\right )-\text {Li}_2\left (e^{-\sinh ^{-1}(c x)}\right )-c x+\sinh ^{-1}(c x) \log \left (1-e^{-\sinh ^{-1}(c x)}\right )-\sinh ^{-1}(c x) \log \left (e^{-\sinh ^{-1}(c x)}+1\right )\right )}{\sqrt {c^2 x^2+1}}+\frac {b d \sqrt {c^2 d x^2+d} \left (3 \left (c^2 x^2+1\right )^{3/2} \sinh ^{-1}(c x)-c x \left (c^2 x^2+3\right )\right )}{9 \sqrt {c^2 x^2+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/x,x]

[Out]

(a*d*(4 + c^2*x^2)*Sqrt[d + c^2*d*x^2])/3 + (b*d*Sqrt[d + c^2*d*x^2]*(-(c*x*(3 + c^2*x^2)) + 3*(1 + c^2*x^2)^(
3/2)*ArcSinh[c*x]))/(9*Sqrt[1 + c^2*x^2]) + a*d^(3/2)*Log[x] - a*d^(3/2)*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]]
+ (b*d*Sqrt[d + c^2*d*x^2]*(-(c*x) + Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + ArcSinh[c*x]*Log[1 - E^(-ArcSinh[c*x])]
- ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] + PolyLog[2, -E^(-ArcSinh[c*x])] - PolyLog[2, E^(-ArcSinh[c*x])]))/S
qrt[1 + c^2*x^2]

________________________________________________________________________________________

fricas [F]  time = 0.68, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (a c^{2} d x^{2} + a d + {\left (b c^{2} d x^{2} + b d\right )} \operatorname {arsinh}\left (c x\right )\right )} \sqrt {c^{2} d x^{2} + d}}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x,x, algorithm="fricas")

[Out]

integral((a*c^2*d*x^2 + a*d + (b*c^2*d*x^2 + b*d)*arcsinh(c*x))*sqrt(c^2*d*x^2 + d)/x, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.21, size = 428, normalized size = 1.72 \[ \frac {\left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} a}{3}-a \,d^{\frac {3}{2}} \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )+a \sqrt {c^{2} d \,x^{2}+d}\, d +\frac {4 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, d \arcsinh \left (c x \right )}{3 \left (c^{2} x^{2}+1\right )}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (2, -c x -\sqrt {c^{2} x^{2}+1}\right ) d}{\sqrt {c^{2} x^{2}+1}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (2, c x +\sqrt {c^{2} x^{2}+1}\right ) d}{\sqrt {c^{2} x^{2}+1}}+\frac {5 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, d \arcsinh \left (c x \right ) x^{2} c^{2}}{3 \left (c^{2} x^{2}+1\right )}-\frac {4 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, d c x}{3 \sqrt {c^{2} x^{2}+1}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, d \arcsinh \left (c x \right ) x^{4} c^{4}}{3 c^{2} x^{2}+3}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, d \,c^{3} x^{3}}{9 \sqrt {c^{2} x^{2}+1}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right ) d}{\sqrt {c^{2} x^{2}+1}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right ) d}{\sqrt {c^{2} x^{2}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x,x)

[Out]

1/3*(c^2*d*x^2+d)^(3/2)*a-a*d^(3/2)*ln((2*d+2*d^(1/2)*(c^2*d*x^2+d)^(1/2))/x)+a*(c^2*d*x^2+d)^(1/2)*d+4/3*b*(d
*(c^2*x^2+1))^(1/2)*d/(c^2*x^2+1)*arcsinh(c*x)-b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*polylog(2,-c*x-(c^2*x
^2+1)^(1/2))*d+b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*polylog(2,c*x+(c^2*x^2+1)^(1/2))*d+5/3*b*(d*(c^2*x^2+
1))^(1/2)*d/(c^2*x^2+1)*arcsinh(c*x)*x^2*c^2-4/3*b*(d*(c^2*x^2+1))^(1/2)*d/(c^2*x^2+1)^(1/2)*c*x+1/3*b*(d*(c^2
*x^2+1))^(1/2)*d/(c^2*x^2+1)*arcsinh(c*x)*x^4*c^4-1/9*b*(d*(c^2*x^2+1))^(1/2)*d/(c^2*x^2+1)^(1/2)*c^3*x^3+b*(d
*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*ln(1-c*x-(c^2*x^2+1)^(1/2))*d-b*(d*(c^2*x^2+1))^(1/2)/(c^2*
x^2+1)^(1/2)*arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1)^(1/2))*d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{3} \, {\left (3 \, d^{\frac {3}{2}} \operatorname {arsinh}\left (\frac {1}{c {\left | x \right |}}\right ) - {\left (c^{2} d x^{2} + d\right )}^{\frac {3}{2}} - 3 \, \sqrt {c^{2} d x^{2} + d} d\right )} a + b \int \frac {{\left (c^{2} d x^{2} + d\right )}^{\frac {3}{2}} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right )}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))/x,x, algorithm="maxima")

[Out]

-1/3*(3*d^(3/2)*arcsinh(1/(c*abs(x))) - (c^2*d*x^2 + d)^(3/2) - 3*sqrt(c^2*d*x^2 + d)*d)*a + b*integrate((c^2*
d*x^2 + d)^(3/2)*log(c*x + sqrt(c^2*x^2 + 1))/x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,{\left (d\,c^2\,x^2+d\right )}^{3/2}}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(3/2))/x,x)

[Out]

int(((a + b*asinh(c*x))*(d + c^2*d*x^2)^(3/2))/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c**2*d*x**2+d)**(3/2)*(a+b*asinh(c*x))/x,x)

[Out]

Integral((d*(c**2*x**2 + 1))**(3/2)*(a + b*asinh(c*x))/x, x)

________________________________________________________________________________________